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Abstract: It is pointed out that in the Woodward-Hoffmann demonstration of the concerted reactions stereo-
specificity (i) some energetical hypotheses concerning the transition state region are implicitly required, (ii) the 
MO's correlations are ambiguous if no spatial criterion is taken into account, and (iii) the demonstration itself and 
its application to real unsymmetric systems requires some relocalization of the canonical MO's. Using a perturba-
tive configuration interaction in a basis of localized orbitals (PCILO), one tries to analyze the energy of the transi­
tion state region. The fully localized zero-order wave function is built as an initial distorted state, a final distorted 
state, or a biradical state. In these three representations, the stereospecificity for a «-bond polyenic chain results 
from a «th order correction in the perturbation expansion representing circular derealization effects around the 
reacting circle. The stereospecificity is linked directly to the parity of n without any symmetry consideration, but 
the energy difference between the two modes may vanish when n increases. PCILO-CNDO/2 numerical calcula­
tions for n = 2 support the theoretical analysis. 

I. Introduction. Remarks about the Demonstration 
of the Woodward-Hoffmann Rules Based on Correlation 
Diagrams. The interpretation of the stereoselectivity of 
the concerted reactions1 has been one of the great suc­
cesses of quantum chemistry. In the main demonstra­
tion, the symmetry of the molecular orbitals plays the 
dominant role.2 We would like to show that the use of 
symmetry orbitals for the demonstration is by no means 
compulsory, as already suggested by Trindle,3 and that 
it is even possible to give a demonstration of the stereo­
specificity rules using bond molecular orbital. In this 
demonstration the parity of the number of conjugated 
bonds implied in the reaction determines directly the 
stereospecificity. 

In this first section we would like to point out three 
points: the Woodward-Hoffmann demonstrations re­
quire some energetical hypotheses concerning the tran­
sition state region; the correlations of MO's in these 
demonstrations are ambiguous if no spatial criterion is 
taken into account; and the demonstration itself and 
its application to real, unsymmetric systems requires 
some relocalization of the MO's. 

Implicit Energetical Hypothesis. The classical 
demonstration of the Woodward-Hoffmann rules is 
based on a correspondence between MO's of the same 
symmetry (with respect to the symmetry elements which 
may be kept along the reaction); the correlation occurs 
between the lowest energy MO of a given symmetry in 
the initial state and the lowest energy MO of the same 
symmetry in the final state; then the same operation is 
repeated on the second ones, and so on. This requires 
a qualitative positioning of the MO's energies which is 
very clear for the small system, because they imply 
a and TT MO's of very different energies, but which 
would be less convincing for large conjugated molecules. 
Then, one introduces the correlation diagrams between 

(1) (a) R. B. Woodward and R. Hoffmann, J. Amer. Chem. Soc, 
87, 395, 2511 (1965); R. Hoffmann and R. B. Woodward, ibid., 87, 
2846, 4319 (1965); (b) H. C. Longuet-Higgins and E. W. Abrahamson, 
ibid., 87,2045(1965). 

(2) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital 
Symmetry," Verlag Chemie Weinheim/Bergstr., Germany, 1970. 

(3) C. Trindle, / . Amer. Chem. Soc, 91, 4054 (1969); 92, 3251, 3255 
(1970); Theor. CMm. Acta, 18, 261 (1970). 

states. At this stage one supposes that the energy of 
a determinant varies in a regular (almost linear) way 
between the energies of the extreme corresponding 
states. Otherwise a direct correlation between two 
ground state deteminants does not exclude an important 
energy barrier. 

A process which appears forbidden when one sup­
poses a regular variation could be allowed if the deter­
minant energies vary in a nonlinear way as the reactions 
takes place (Figure 1). Then, the interaction is intro­
duced between the corresponding determinants. 

Some authors have questioned the use of the non-
crossing rules4 in the correlation diagrams but it is 
not absolutely necessary for the demonstration that 
the interaction matrix element is different from zero. 
If it was zero the "forbidden" processes would be even 
more unfavored than when one introduces the non-
crossing rule. 

But to get again some qualitative conclusions, 
one may suppose that the interaction element between 
the determinants is smaller than the energy differences 
between them. Therefore, the demonstration based 
on the correlation diagrams supposes (1) a regular 
variation of the determinants energies along the reac­
tion, and (2) the weakness of the interaction terms be­
tween the determinants with respect to their energy 
differences. 

It would seem worthwhile to get a direct estimate of 
the sign and perhaps the order of magnitude of the en­
ergy differences between reasonable transition states 
for the various stereochemical processes. The dem­
onstration given in sections II-IV tries to work in that 
direction. 

Ambiguities in the Correlation of the MO's. The 
correlation is in principle simply based on the symmetry 
and energetic characters of the molecular orbitals. 
Such a correlation sometimes introduces a correspon­
dence between molecular orbitals of the initial and final 
states which are not defined on common atomic orbitals, 
i.e., which are topologically completely exclusive. One 
may find an example of such a correlation in the buta-
diene-ethylene 4 + 2 Diels-Alder reaction. As al-

(4) G. Feler, ibid., 12, 412 (1968). 
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ready noticed by Millie,5 the T MO of the ethylene, 
denned on the XsXe AO's, corresponds to the ethylenic 
orbital of the final product, defined on the X2XS AO's. 

f 
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X5 

One cannot ignore completely the topological aspect 
and the spatial definition of the MO's. A correlation 
diagram which only takes into account the symmetry 
and energy properties, irrespective of their localiza­
tion, leads to absurd results. Woodward and Hoff­
mann give such an example for the a priori conceivable 
transformation of the cyclooctatetraene into a cubane 
molecule (ref 2, p 32). The reaction would be the sum 
of two cyclizations between two ethylenic systems al­
most orthogonal to each other. These reactions are 
forbidden, and the reaction cannot take place. How­
ever, the correlation rules applied without considera­
tion of any spatial problem describe the reaction as 
thermally possible; this is due to the fact that the cor­
relation occurs between MO's of the two systems. 
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Woodward and Hoffmann are therefore compelled 
to introduce a supplementary rule: "each basic pro­
cess must be isolated and analyzed separately." They 
explain that "in fact whether a reaction is symmetry 
allowed or symmetry forbidden is determined by the 
height of the electronic hill that a reactant or product 
orbitals must climb in reaching the transition state. 
And the presence or absence of a hill is a function of 
the intended correlation, or the initial slope of the 
levels." By such sentences the authors introduce topo­
logical criteria, as they do when building the correct 
correlation diagram (ref 2, p 33), for this reaction. 

A question then arises. Is it necessary to take sys­
tematically into account this spatial criterion in the 
correlation diagram? Why do Woodward and Hoff­
mann neglect this "intended correlation" in the Diels-
Alder 4 + 2 reaction?6 When, and to what extent, 
is it necessary to introduce the spatial character of the 
MO's? 

These contradictions or uncertainties will disappear 
completely when we work with localized MO's and 
the artifact of the cyclooctatetraene —»• cubane reaction 
will not occur. 

Use of Symmetry Orbitals for Substituted Molecules 
and the Status of the Molecular Orbitals Used. Wood­
ward and Hoffmann say at the beginning of their re­
view7 that "the semilocalized molecular orbitals," i.e., 
the bond molecular orbitals built from two atomic or-

(5) P. Millie, Bull. Soc. Chim. Fr., 4031 (1966). 
(6) Reference 2, p 23. The correct correlation should occur between 

the x orbital of the ethylene molecule and the antisymmetrical a* or­
bital of the cyclobutene, but the error is not important for the thermal 
reaction, nor for the photochemical reaction from the excited butadiene. 
It might be important for a reaction between the ethylene excited mole­
cule and the butadiene ground state. 

(7) Reference 2, p 4. 
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Figure 1. Illustration of the role of the regular variation of the 
determinant energies, (a) Linear variation of the energy; the 
process appears forbidden, (b) Nonlinear variation of the energy; 
the process is not forbidden. 

bitals, properly hybridized if necessary, "are not the 
proper molecular orbitals. The latter are completely 
delocalized, subject to the full symmetry of the mole­
cule." 

One may remark immediately that they do not follow 
this statement, even in the simplest examples; their 
a molecular orbitals used in the correlation diagrams 
are never "completely delocalized" as they should be 
to be "proper." For instance, in the Diels-Alder 4 + 
2 cycloaddition of ethylene and butadiene molecules 
(ref 2, p 23), the <r orbitals of the cyclohexane are not 
really delocalized. The diagonalization of any Hamil-
tonian for this molecule would lead to symmetrical 
and antisymmetrical molecular orbitals equally spread 
over the whole skeleton. With such MO's, even the 
<7-7T separation in the cyclohexene would require some 
relocalization. 

In fact, the proposed treatment is not incorrect from 
that point of view at least, but to support it, one must 
leave completely the idea that there is an unique set of 
proper orbitals. It is (well) known, for 20 years,8 that 
for a given ^-electron determinant, there exists an in­
finity of equivalent sets of molecular orbitals which are 
obtained from each other by unitary transformations, 
keeping the determinant unchanged. 

Then from a set of delocalized molecular orbitals, 
one may build equivalent sets of bond molecular orbit­
als, well localized on the chemical bonds. Various 
criteria, both intrinsic815'9 and extrinsic,10 have been 
proposed to localize the molecular orbitals, and they 
all give a description of the molecule in complete agree­
ment with the Lewis representation.n 

(8) J. E. Lennard-Jones, Proc. Roy. Soc, Ser. A, 198, 114 (1949); 
G. G. Hall and J. E. Lennard-Jones, ibid., 202, 155 (1950); 205, 367 
(1951); G. G. Hall, ibid., 202, 166 (1950); 213, 102 (1952); (b) C. 
Edmiston and K. Ruedenberg, / . Chem. Phys., 43, 597 (1963); Rev. 
Mod. Phys., 35, 457 (1963); (c) T. L. Gilbert, "Molecular Orbitals in 
Chemistry, Physics, and Biology," P. O. Lowdin and B. Pullman, Ed., 
Academic Press, New York N. Y., 1964, p 405. This fundamental 
point does not appear in recently published text books in quantum chem­
istry. For a pedagogical review on this question see G. Berthier, "As­
pects de la Chimie Quantique Contemporaine" (Colloques Interna-
tionaux du CNRS, 195), R. Daudel and A. Pullman, Ed., Centre 
national de la Recherche scientifique, Paris, 1971. 

(9) (a) J. M. Foster and S. F. Boys, Rev. Mod. Phys., 32, 300 (1960); 
(b) S. F. Boys, "Quantum Theory of Atoms, Molecules, and the Solid 
States," P. O. Lowdin, Ed., Academic Press, New York, N. Y., 1966. 

(10) V. Magnasco and A. Perico, / . Chem. Phys., 47,971 (1967). 
(11) For examples of ab initio calculations, see (a) ref 10; (b) U. 

Kaldor, ibid., 46, 1981 (1967); (c) S. Rothenberg, ibid,, 51, 3389 (1969); 
(d) E. Switkes, R. M. Stevens, W. N. Lipscomb, and N. D. Newton, 
ibid., 51, 2085 (1969); E. Switkes, W. N. Lipscomb, and M. D. Newton, 
J. Amer. Chem. Soc, 92, 3837, 3847 (1970); M. D. Newton, E. Switkes, 
and W. N. Lipscomb, J. Chem. Phys., 53, 2645 (1970); for semiempiri-
cal calculations one may quote, for instance, (e) C. Trindle and O. 
Sinanoglu, ibid., 49, 65 (1968); (f) R. Polak, Collect. Czech. Chem. Com-
mun., 33, 2765 (1968); (g) S. Diner, J. P. Malrieu, F. Jordan, and P. 
Claverie, Theor. Chim. Acta, 18, 86 (1970). 
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Besides these delocalized and localized sets of MO's, 
one may imagine intermediate or partial localizations. 
These descriptions are as valid as the previous ones. 
Such an example may be found in the classical descrip­
tion of the conjugated systems with T delocalized and 
a localized MO's. The traditional presentation of this 
description, which spoke of a intrinsically localized and 
it intrinsically delocalized electrons,12 is erroneous 
since one knows now that the TT and <r MO's are prac­
tically localizable to the same extent,118 but this frequent 
TT description was by itself perfectly correct, since one 
may localize the a MO's and let the T MO's delocal­
ized.13 

The Woodward-Hoffmann MO's represent another 
intermediate model where the TT MO's have been local­
ized on the T atomic orbitals (which does not appear 
immediately when the molecule is not planar), but 
where they spread in principle on the whole TT system, 
and where the a MO's are semi-localized, i.e., delocal­
ized on a small number of chemical bonds (cf. the 4 + 
2 Diels-Alder reaction). Thus a partial localization 
is necessary even in the simplest cases considered in 
the theoretical demonstration. 

A more important localization is necessary when one 
considers unsymmetrically substituted compounds. 
Several authors point out that "while the familiar analy­
sis dealt with systems for which symmetry allowed an 
easy construction of the necessary correlation diagrams, 
most experimental tests involved systems without useful 
symmetry."3 This is the reason why Trindle, for in­
stance, introduces nodal criteria to correlate the molec­
ular orbitals, which represents a generalization of sym­
metry arguments suitable for the study of the reactions 
of any unsymmetrical, substituted system.3 In fact 
the use of symmetrical orbitals for unsymmetrical com­
pounds is correct if one performs a localization of the 
molecular orbitals of this molecule on the basic sym­
metrical system. Let us consider, for instance, 1-
methylbutadiene. In this molecule, the three delocal­
ized T MO's obtained by diagonalization of a one-
electron Hamiltonian look completely different from 
the butadiene MO's, each of them having an important 
weight on the "CH3" system (86, 9, and 5%), but the 
same determinant may be written with CH bond molec­
ular orbitals and two w delocalized MO's which are 
very close to the butadiene TT MO's, having only a 1 % 
weight on the CH bonds. To work with the butadiene 
MO's for the study of the reaction of a substituted 
butadiene is not so odd as it would appear when looking 
to the fully delocalized MO's of the substituted molecule. 

What is true for hyperconjugation is true for a real 
conjugation. In the butadiene molecule one may find 
two ethylene-like localized w MO's, and if the butadiene 
molecule enters the reaction by only one double bond, as 
in the concerted T4S + X2S Diels-Alder cycloaddition 
of butadiene to itself (ref 2, p 145), it is not necessary 
to make another demonstration than for the butadiene 
+ ethylene reaction using two systems of butadiene 

(12) See for instance the basic books on TT electron methods. 
(13) The equivalent MO's are only equivalent for the properties of 

a given electronic state. The symmetry delocalized MO's are neces­
sary to represent an ionization or an excitation as a one-electron event, 
i.e., to represent two states with two determinants using the same set 
of MO's. As the main success and main effort of quantum chemistry 
have, during a long period of time, been the interpretation of (TT —• 7r*) 
spectroscopy, the delocalized w MO's have been considered as the "true" 
MO's. This is nothing but an historical accident. 

molecular orbitals (as long as the secondary effects 
are not involved, but for these too, the localization is 
worthwhile as will be demonstrated later on). In the 
same way, in the hexatriene molecule one may find, by 
an intermediate localization, one T localized MO <pi 
centered on one side of the molecule, and two 7r de-
localized MO's ip2' and ^ 3 ' which resemble very closely 
the TT MO's of the butadiene molecule. Let us call 
<pi the classical ethylenic MO and ^2 and Ip3 the w de-
localized SCF-MO's of the butadiene molecule. We 
have performed the calculation of the scalar products 
(overlaps) between the hexatriene w SCF-MO's re­
sulting from an intermediate localization and the ethyl­
ene and butadiene T SCF-MO's. These scalar prod­
ucts are almost equal to unity: (<pi'[<pi) = 0.994, 
<<p2'|<p2} = 0.996, W\<pi) = 0.996. Therefore, if 
the hexatriene molecule acts by two double bonds as 
the butadiene molecule, it is not necessary to build 
special correlation diagrams using the three TT delocal­
ized MO's of the hexatriene molecule, to explain in a 
complicated way, the stereochemistry of the reaction. 
The demonstration already done for the butadiene 
molecule is still valid for hexatriene, as long as the TT 
terminal bond is not destroyed along the reaction. 

This is the reason why one may apply directly the 
Woodward-Hoffmann rules, demonstrated on very 
small systems, to very large conjugated systems. For 
instance it would be tedious to build a correlation dia­
gram for the transformation of cis- and /ra«s-benzo-
cyclobutene (ref 2, p 50) and for the Diels-Alder re­
action which follows and which involves 20 -K electrons 
on a giant TT system. In fact this TT system may be 
described as two benzenic systems and two cv's-buta-
diene systems with small tails of the MO's of one sys­
tem on the other system. The reaction is therefore 
a 4 + 2 Diels-Alder reaction. 

Most of the applications of the Woodward-Hoffmann 
rules are relevant if and only if one carries out a prelim­
inary relocalization of the delocalized MO's inside and 
outside the reaction cycle itself. But one must leave 
then any dogmatic point of view about the "quality" 
of the MO's. 

Then a question arises; since symmetry and localized 
MO's are equivalent, is it possible to perform an analy­
sis or a demonstration of the Woodward-Hoffmann 
rules using localized molecular orbitals? Several 
types of localized MO's may be considered, among 
which one may distinguish between localized SCF-MO's 
obtained by unitary transform from the canonical 
SCF-MO's, and fully localized MO's. The localized 
SCF-MO's are mainly defined on one bond but they 
have small "tails" on the other bonds. These tails 
may be significant, and, for instance, the tails may be 
of different orders of magnitude in the two modes of a 
concerted reaction. Our method will be different; 
we shall start from fully localized MO's each of them 
being completely localized on a given chemical bond. 
These MO's are no longer self-consistent, and they do 
not satisfy the Brillouin's theorem. A lot of calcula­
tions have shown now14 that the determinant built 

(14) (a) R. McWeeny and K. Ohno, Proc. Roy. Soc, Ser. A, 255, 367 
(1960); A. Tsuchida and K. Ohno, / . Chem. Phvs., 39, 600 (1963); 
R. McWeeny and G. Del Re, Theor. Chim. Acta, 10, 13 (1968); (b) J. D. 
Petkeand J. L. Whitten,/. Chem.Phys., 51,3166(1969); (c) J. R. Hoy-
land, J. Amer. Chem. Soc, 90, 2227 (1968); / . Chem. Phvs., 50, 473 
(1969); (d) A. Masson, B. Levy, and J. P. Malrieu, Theor. Chim. Acta, 
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from these MO's is a good enough approximation to 
the exact wave function to be considered as the zero-
order approximation of a perturbative process. The 
derealization of the fully localized MO's toward SCF-
MO's is obtained by a perturbation procedure which 
gives small tails on the neighboring bonds. 

Therefore we want to start from a zero-order de­
scription of the molecule which uses typical MO's in­
dependent of the considered mode, and we shall try 
to analyze the origin of the stereospecificity in terms 
of interaction processes. 

II. Localized Demonstration of the Stereospecificity 
for the Butadiene-Cyclobutene Reaction. (1) Method. 
One attempts to evaluate directly the energy of inter­
mediate states between the final and initial states, giving 
a likely representation of the transition state. In an 
effective calculation, one may attempt to follow the 
energy variation along a reaction path, or to draw the 
potential map for several variations of the nuclei posi­
tions. The qualitative demonstration of the stereo­
specificity rule is based on a direct approach of the 
energy in the intermediate configurations. 

We attribute to the transition state an intermediate 
geometry between the initial state and the final state 
geometries. For instance, one may suppose that each 
bond angle and each bond length have been subjected 
to half of the total change when going from the initial 
to the final state. 

The intermediate states energy is calculated by a con-
figurational interaction between determinants built 
with the use of a localized molecular orbital set. The 
calculation method we employ is the PCILO method 
recently conceived140 and widely used for conforma­
tional problems studies.15 The calculation process 
can be summarized as follows. 

For every nuclear configuration (i) one builds a set 
of likely bond molecular orbitals both bonding (^1) 
and antibonding (<pi*), each of them defined on one 
or two properly hybridized atomic orbitals; (ii) The 
bonding orbitals are used to build a fully localized 
determinant. This determinant represents the zero-
order wave function $0 for the given geometry. 

(iii) With the antibonding orbitals, one may build 
mono or diexcited determinants (or configurations). 
These configurations intereact with the $o wave func­
tion, and the interaction between these configurations 
represents the configuration interaction matrix. 

(iv) The ground state energy of the system will be 
obtained as the lowest eigenvalue of this matrix found 
by a Rayleigh-Schrodinger perturbation development. 
This mathematical process physically means that one 
considers the interaction between the zero-order state 
and the others configurations 3>i as a perturbation. 
One may use indifferently for the unperturbed Hamil-
tonian, the Moller-Plesset or Epstein-Nesbet defini­
tions.16 

18,193 (1970); (e) in the semierapirical framework, the PCILO method, 
S. Diner, J. P. Malrieu, and P. Claverie, Theor. CMm. Acta, 13, 1, 18 
(1969); S. Diner, J. P. Malrieu, F. Jordan, and M. Gilbert, ibid., 15, 
100 (1969); F. Jordan, M. Gilbert, J. P. Malrieu, and U. Pincelli, 
ibid., 15,211(1969). 

(15) See for instance, B. Maigret, B. Pullman, and J. Caillet, Biochem. 
Biophys. Res., 40, 808 (1970); J. Langlet, B. Pullman, and H. Berthod, 
J. Chim.Phys.,Physicochim. Biol., 67,480(1970). 

(16) C. Moller and M. S. Plesset, Phys. Rev., 46, 618 (1964); P. S. 
Epstein, ibid., 28, 695 (1926); R. K. Nesbet, Proc. Roy. Soc, Ser. A, 
230,312,322(1955). 

(a) (b) 

Figure 2. Definition of the atomic orbitals for the intermediate 
states in the reaction butadiene -* cyclobutene. The arrows 
represent the orientation of the atomic orbitals orthogonal to the 
hybrids of the invariant bonds. Their direction defines the positive 
lobe which is then the large one: (a) denotes the disrotatory mode, 
(b) the conrotatory mode. 

One can represent the electronic zero-order wave 
function with only one determinant. In the course 
of the reaction, some molecular orbitals of the initial 
state undergo only quantitative transformations (for 
instance the <r bonds in the cyclizations of linear poly­
enes). One will call these bonds "invariant bonds."17 

One will build these bonds by a criterion such as the 
maximum overlap18 between two atomic hybrid orbitals. 
In the minimal basis set at least, this procedure defines 
some atomic orbitals, one on each carbon atom of the 
cycle, which are orthogonal to the hybrids of the same 
center entering the invariant bonds. The reacting 
(or T) bonds will be defined on these AO's. For in­
stance, in the butadiene-cyclobutene reaction, one gets 
four atomic orbitals orthogonal to the three u hybrids 
of the same center; two of them (on the central carbon 
atoms) are pure T atomic orbitals, while the two others 
(on the external carbon) have an intermediate hydridiza-
tion between pure IT (pz) and sp3 (Figure 2). 

For the electrocyclic reaction involving the n double 
bonds of a polyene, one gets thus 2« atomic orbitals 
Xi orthogonal to the hybrids of the invariant bonds. 
With these 2« atomic orbitals one has to build In 
bonding molecular spin orbitals in order to obtain the 
zero-order determinant. If one calls <p' the invariant 
molecular orbitals and <p the reacting molecular orbitals 
constructed on the 2« atomic orbitals Xi, the approxi­
mate ground-state determinant <£0 has the following 
form. 

$ 0 = \(f>l'<f>\'. • .(Pp'pp'. . . ( p i . . . «p2n| ( 1 ) 

We can consider three sets of localized MO's <p, rep­
resenting three extreme descriptions of the transition 
state. 

(i) Distorted Initial State. The molecular orbitals 
<p are defined on the AO's Xt in the same way as in the 
initial state. So in the butadiene-cyclobutene reaction, 
the molecular orbitals will be in the disrotatory mode 

<P\ = (Xi + X2)/ Vl and ^1 

«P2 = (X3 + Xi)IVl and & (2) 

if the orientation of the AO's Xt is chosen according to 
the Figure 2.19 In the conrotatory mode, <p2 is changed 

(17) These "invariant" bonds may be some ir bonds which are not 
destroyed in the cyclization process. 

(18) G. Del Re, Theor. CMm. Acta, 1,188 (1963). 
(19) It is evident from the principles of quantum mechanics, that the 

results are independent on the choice of the phase (i.e., sign) of the 
MO's and AO's, but this sign must be kept constant on a given calcula­
tion. 
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into 

V2 = (X8 - X4)/Vl (2') 

The corresponding antibondmg molecular orbitals are 
built on the same pair of atomic orbitals 

Pi* = (-Xi + X2)/ Vl 

<p2* = - (X, ± X4)/Vl 

depending on the disrotatory or the conrotatory char­
acter of the cyclization. These MO's are orthogonal 
in the CNDO approximations.20 

(H) Distorted Final State. We have for the molecu­
lar bonding orbitals p a x bond between xz and xs and 
a partially broken a bond between xi and Xi (in the two 
modes) 

Vi = (X2 + X3)/V2 (4) 

Vl = (Xl + Xi)/Vl 

There are two corresponding -w and a antibonding 
orbitals. 

(iii) Intermediate Biradical State. With a T bond 
and two unpaired electrons 

$o = Wi' • • .^pVm(XsX4 ± X4Xs)I (5) 

$0 will be a singlet or a triplet state. The vi orbital 
represents the cyclobutane «• orbital 

Vi = (X2 + x3)/V2 (6) 

It is observed that one may consider such intermediate 
states representations for all electrocyclic reactions 
whatever the number of conjugated, bonds. 

(2) Ground-State Determinant Energy. The elec­
tronic energy of the ground-state determinant $0 is 
given by 

£oe = (*o|#|*o> = Z(ViI - Wl + T\Vt) + 
i 

1UTL(Jv - Kti) (J) 
i i 

where T represents the nuclear attraction operator and 
where the summations on ;' and j are carried over the 
molecular orbitals occupied in $0. •/« and K(j are the 
well-known coulombic and exchange integrals. 

One adds the nuclear repulsion energy En to the 
electronic energy, E0*, and one gets the total energy 

E0 = E0* + En (8) 

It will be arbitrarily supposed here, and numerically 
verified in the next section, that the E0 energy is prac­
tically the same for the two modes at the same stage of 
the geometrical transformation. 

The E0 energy physically represents the electrostatic 
interaction energy and the short distances repulsion. 
As the hydrocarbons bonds are not very polar, our hy­
pothesis is equivalent to assuming that the steric re­
pulsions are almost equal in analogous intermediate 
states in the two modes. 

(3) Energetic Corrections, (a) Distorted Initial 
State Representation. The bond polarization correc­
tions, arising from the interaction between $0 and $<_<•, 
may be neglected in weakly polar molecules. For 
polar molecules, the interaction term (i\F\i*) where F 

(20) J. A. Pople and G. A. Segal, J, Chem. Phys., 44,3289 (1966). 

is the Hartree-Fock operator relative to <J>0 mainly de­
pends on the bond i itself and cannot depend signifi­
cantly on the considered mode. 

On the contrary, one will have important derealiza­
tion corrections coming from the <p{ -*• Vi* monoexcita-
tions, i.e., from the electron jumps from one bond to 
the antibonding orbitals of the other bonds. This ex­
citation introduces the following corrections 

£2de.o = ZZl(*o\H\$^r)>/(E0 - £(,'*)) (9) 

where 

$i-*r = I- • -VU-KVj'Vt- • -Vn\ 

In the CNDO hypotheses,20 due to the total localization 
of the molecular orbitals 

<*o|ff|*,-,.> = (ViWv1*) (10) 

where A is the (kinetic energy plus nuclear attraction) 
monoelectronic operator. 

If Xa and Xa are the two hybrid atomic orbitals 
entering in the fully localized bond tpu *'•£•> if 

Vi = C4iXii + Ci2Xi2 ,j j . 

Vi* = -Cj2XjI + C31Xj2 

(Vi\h\vi*) = -Ci1Cj2(XiIiAlXj1) + 

CiICjI(Xi1IAlXj2) -Ci2Cj2(Xi2|A|Xji) + 

Ci2Cj1(Xi2IAlXj2) (12) 

This formula shows that the two cyclization modes 
present a qualitative difference in the charge transfer 
•K -*• TT* correction if we start, for example, from the 
distorted initial state (representation 1). 

Effectively for the butadiene in the disrotatory mode 

(V1WV2*) = 72(-(X1IAIx3) - (x2|A|x3) + 

(Xi|A|x4) + (X2(A[X4)) 

and in the conrotatory mode 

= 72((Xi[AJx3) + (x2|A|x3) + 

(X1[AIX4) + (X2[AIX4)) (13) 

From Figure 1 it immediately appears that (xi|A|x3) = 
±(x2|A|x4) according to the disrotatory or conrotatory 
character of the cyclization; it follows that in the dis­
rotatory mode 

(Vi\h\v2*) = (-(X2IA[X3) + (Xi|A[x4))/2 

and in the conrotatory mode 

= ((x2|A|x3) + (xi|A[x4))/2 (14) 

The main question concerns the signs of (x2jA|x3) 
and (xi[A|x4) in the two modes. With a Wolfs-
berg-Helmoltz-like approximation (as in the CNDO 
hypothesis)20 

<X,|A|x,> = (XiIx1)(Pi + / W (15) 

where fi°t and /3°, are two negative parameters charac­
teristic of the atomic orbitals Xi and X1. It appears 
immediately that the overlap (X2

1IXs) is always posi­
tive in two modes, while (Xi|x4) is positive as soon as 
the reaction has progressed sufficiently in the conrota­
tory mode, as is apparent from Figure 3, and always 
positive in the disrotatory mode. 
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Thus in the transition state region for the di srota-
tory mode, the integrals (Xi\h\x>) and (Xi|̂ |X4> are 
subtracted one from the other in the integral ((pi\h\tp2*) 
while they are added in the conrotatory mode. 
The derealization contribution correction will be 
therefore much more important in the conrotatory 
mode than in the disrotatory one. It is difficult to show 
qualitatively that there is no important difference be­
tween the delocalization corrections <x -*• a* and a -*• 
TT* or T -*• c* of the two modes. But this has been 
numerically checked below. 

The other second-order corrections result from the 
interaction of 3>0 with "diexcited" determinants giving 
the so-called "correlation" corrections. In the PC-
ILO-CNDO hypotheses, these corrections belong to 
two types: on one hand, the intrabond corrections, 
which are bond characteristics and, therefore, in a first 
approximation, independent from the mode (for a more 
explicit verification, see ref 14e, the expression of the 
corresponding correction); on the other hand, the in-
terbond correlation arising from the interaction of $0 
with the diexcited states 

i* j* 

i J 

which gives the following energetic corrections 

4<y|i*y*)7^o - E( 

where 

i* j * 

i j 
(16) 

(ij\i*j*) = CaCaCflCjiigiw — ga}2 — gt2j\ + gtm) 

with 

gun = (xaXji\l/nAxaxA) 

These bielectronic integrals do not depend on the orien­
tation of the atomic orbitals. In the CNDO hypothesis, 
they are taken equal to (2s2s|l/ri,2|2s2s) or (ls2s|l/ri,2| 
ls2s) integrals. Therefore they are independent of the 
chosen mode. 

In the electronic reaction butadiene -»• cyclobutene, 
the main stereospecific correction appears to come from 
the second order ir -*• T* delocalization effects, If one 
does not use the CNDO approximations for the bielec­
tronic integrals, some diexcitations with a T -*• ** 
charge transfer would lead to stereospecific effects; the 
(<pk -»• <pk*, (fix -*• <Pi*) diexcited states interact with $0 

by an integral of the form {<pnpk\(p2*<pk*). When 
developed by the Mulliken approximation, this integral 
is still proportional to the overlap (vilva*) and there­
fore larger in the conrotatory mode than in the dis­
rotatory one. 

(b) Distorted Final State Representation. One can 
consider the same geometry as in the preceeding case 
and the same hybridization of the atomic orbitals. The 
only change concerns the definition of the molecular 
orbitals on these atomic orbitals according to eq 4. 
One may notice that in this case the bond MO's are also 
symmetry MO's. Let us consider the delocalization 
correction arising from the electron jump ^1 -*• <p2*. <pi 
is symmetrical with respect to the symmetry plane kept 
along the disrotatory mode while in this mode <p2* is 
antisymmetrical. Thus {(pi\h\<p2*) is zero in the dis­
rotatory mode. On the contrary <p\ and <p2* are both 
antisymmetrical with respect to the axis of symmetry 

0.6 
OC2M x„> 

-0.6 

Figure 3. Evolution of the overlap (xil̂ JXn) between the terminal x 
atomic orbitals along the reaction path for the two modes: solid 
lines denote the disrotatory mode, dotted lines the conrotatory 
mode. 

kept along the conrotatory mode, and one gets a non­
zero delocalization stabilization in this mode. 

< V l | ^ 2 * ) 2 c 

AEVir,Vl* 
< 0 

(<Pi\h\<p2*)h = O (17) 
AEv^Vl* 

The same conclusions holds for the inverse delocaliza­
tion <p% -*• (pi*. Again the delocalization between the 
reacting MO's favors the conrotatory mode. 

(c) Biradical Representation. Again, for the same 
geometry and for the same definition of the hybrid 
atomic orbitals, the zero-order wave function is taken as 

with 

$0 = I. . . (PiVi(XiX4 ± X4Xi)I 

<PI = (X2 + XtMy/2 

(18) 

(19) 

At the second order, one has to consider the delocaliza­
tion excitations Xi -*• X4 and X4 -*• Xi for which neither 
the sign nor the order of magnitude change, Xi -*• <Pi* 
and <pi -*• Xi which are equal in the two modes, and 
X4 -*• <P\* and <pi -+• X4, the sign of which changes with 
the mode. But, in the second order, these interactions 
occurring in squared matrix elements do not give a differ­
ence between the two modes. 

One has to go the third order to find stereospecific 
interactions by a circular process. The interaction be­
tween singly excited states, for instance, Xi -*• X4 and 
Vl-*X4 

< * o | ^ | # X l - J < * x , - x J ^ I * » , - x < > < ^ 1 - x J ^ I * o ) X 

(AEx^xt)(AE^Xl) 

gives the contribution 

-(Xi|/*|X4>(viWXi><X4|%i>/A£2 (20) 

As is apparent from Figure 1, (Xih'Xi) and (<pi\h\xi) 
are always negative, while (Xt\h\<pi) ~ l/v/2(X4|A|x3) 
is negative in the disrotatory mode, positive in the con­
rotatory mode. 

In the biradical representation, the first stereospecific 
interaction terms appear at the third order for two 
double bonds, while it occurred in the second-order cor­
rections for the closed shell zero-order wave function. 
But one finds the same qualitative results, which are 
therefore independent on the choice of the fully local­
ized zero-order wave function. 

(4) Photochemical Reaction. For the photochemi­
cal reactions, one has to consider an excited state 
$0*. This state can no longer be represented by a 
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single determinant since the possible local excitations 
between the localized molecular orbitals lead to de­
terminants which are not eigenfunctions of the sym­
metry operators of the system and which are degen­
erate between themselves. One must represent the 
excited states as linear combinations of several de­
terminants representing different local excitations. For 
instance, for the butadiene molecule 

*o* = a\. . .(<f>m* ± 9»i*£i)W2[ + 

a'l. . .<pi<h(W2* ± ^2*^)1 + /31. . -(pm* ± 

<Pi*v>d<p2& + /3 ' | . . .<pm(<pi$i* ± (pi*&)\ (21) 

One obtains the coefficients a, a', /3, and /3' and the 
energy of $ 0 by diagonalizing an excitonic configuration 
interaction matrix21 built between the various excited 
fully localized determinants. In the butadiene case, 
this excitonic matrix presents the following form 

$1_,1» $ 2 ^ 2 * $ l - » 2 * $2->l* 

E bli 0l«2« —/3l2 
I 

I E -/J12 /S1.,. 

E' 0 

E' 

where 

6l2 = (<Pl<£2*|l/>l,2|<i5l*<p2*) 

/3i*2* = (<Pi*\h\Vi) (22) 

(3l2 = (<£l!/*|<P2> 

The b12 integral is independent of the mode while the 
integrals ^2* = - /3« = (+<Xi|A|x4> - <X2|^ixs»/2, 
according to the conrotatory or disrotatory character 
of the mode. So these two integrals are more impor­
tant when the mode is disrotatory. It follows that the 
lowest eigenvalue of the matrix is lower, which favors 
the disrotatory mode of butadiene cyclization. 

In the final state representation (cyclobutene), an 
analogous treatment may be built implying the T and 
the a bonds and again the integrals/3i*2* and — /3i2 are 
larger in the disrotatory mode and zero in the conrota­
tory mode, as seen from eq 4 and Figure I, favoring the 
disrotatory mode. One also may consider that in the 
distorted cyclobutene, the excitation is kept on the IT 
bond (P1; then the interaction of the singly excited 
7T-x* state (pi -*• (pi* with the singly excited state Ip1 -*• 
(Pz* leads to a second-order stabilization ((pi*\h\ip2*)2/ 
€1 — e2. In the conrotatory mode this correction is 
zero, due to the symmetry of the MO's, while it is 
important in the disrotatory mode. A similar demon­
stration is feasible in the biradical representation for the 
third-order correction. 

III. Numerical Study of the Butadiene-Cyclobutene 
Reaction Using Localized MO's. Geometries. We 
have chosen for the initial and final configurations the 
butadiene and cyclobutene geometries given in the litera­
ture22-23 except for the fact that we used the same CH 

(21) W. T. Simpson, / . Amer. Chem. Soc, 73, 5363 (1951); 77, 6164 
(1955). 

(22) A. Almenningen, O. Bastiansen, and M. Traetteberg, Acta Chem. 
Scand., 12, 1221 (1967); A. R. H. Cole, G. M. Moroy, and G. A. Os­
borne, Spectrochim. Acta, 23,909 (1967). 

(23) E. Elihu Goldish, K. Hedberg, and V. Schomaker, J. Amer. 
Chem. Soc.,7S,2714(1956). 

bond lengths for the two molecules. The reaction path 
is determined by nine intermediate geometries where all 
angles a} and bond distances pt are modified in the 
same ratio with respect to the total change (Aa1, Ap1) 
between the initial and final conformations 

dpt=da, = k_ k = 0 _ 1 0 

Apt Aa1 10 

In such a reaction path, all the bond, dihedral angles, 
and bond lengths vary in the same way. This hypothesis 
is not compulsory but it allows the construction of a 
likely reaction path with a small amount of calculations. 
In a later paper, several of these degrees of freedom 
will be varied independently. In a preliminary study 
we varied independently the distance between Ci and 
C4 (in fact the bond distance C2C3 and the bond angles 
CiC2C3 and C2C3C4) on one hand, and the torsional 
process around the CiC2 and C3C4 bonds on the other 
hand (in fact the bond and dihedral angles relative to 
the CH bonds, and the C1C2 and C3C4 bond lengths). 
The preferred path appeared to occur for an equal 
variation of these two categories of degrees of freedom. 
Therefore we shall only give the curves relative to the 
simple reaction paths. 

Fully Localized Zero-Order Representations. From 
k = 0 to 6, we have built and perturbed the determinant 
constructed from the fully localized molecular orbitals 
of the butadiene system. 

From k = 4 to 10, we have built and perturbed the 
determinant constructed from the fully localized MO's 
of the cyclobutene molecule. Therefore in the pre­
sumed region of the transition state (k = 4-6) we have 
two competitive representations. For this region too, 
we also studied the biradical representation. In all 
these representations the MO's are built with two hybrid 
orbitals obtained by the Del Re's maximum overlap 
criterion.18 However, the four atomic orbitals which 
enter the two w MO's destroyed in the reaction are de­
termined by orthogonality to the other a atomic 
orbitals.24 This process gives the same set of AO's for 
a given k in the three representations. The only dif­
ference between these three representations concerns 
the 7T MO's constructed with the four AO's resulting 
from the orthogonalization to the a AO's. This is in 
conformity with the PCILO algorithm.14e 

One can expect that the butadiene representation 
becomes worse when one comes close to the cyclobutene 
conformation, i.e., for large k. Reciprocally, the cyclo­
butene representation should be bad for small k. One 
may therefore expect that the energy curves of the two 
representations intersect somewhere in the transition 
state region. One can choose for the corresponding 
values of k the representation which gives the lower 
energy. The reaction path energy curve will appear then 
as a hill with an angular top. In fact, for the transition 
state region, it may occur that none of the representa­
tions is reasonable enough to give a good convergence 

(24) In fact these two main MO's are one TT and one a MO in the 
cyclobutene representation. 
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Figure 4. Ground-state energies in kcal/mol as a function of k. 
For this figure and for Figures 5 and 6, the solid lines represent the 
conrotatory mode. E0 represents the zero-order energy, £2m 
represents the energy corrected to the second order by the mono-
excited states, Ei represents the energy including the full second-
order correction, and Ez represents the energy corrected to the third 
order. 

of the perturbation series. In such a case one can 
smooth the curves by an approximate interpolation, 
but for further calculations one should make some 
configuration interaction before the perturbation de­
velopment, the zero-order wave function becoming 
then a linear combination of several determinants. 

We have used in this calculation the Pople and Segal 
CNDO/2 parametrization.20 

Zero-Order Energy. The zero-order energy (in­
cluding the nuclear repulsion) gives a very high barrier 
for the two modes: 230 kcal/mol for the conrotatory 
mode (from the butadiene) and 210 kcal/mol for the 
disrotatory mode (see .E0 in Figure 4). Contrary to the 
experimental result, the disrotatory mode is favored 
by 20 kcal/mol but this difference is weak. In the two 
modes the relative interatomic distances (especially 
between the terminal H atoms) are completely dif­
ferent for a given k. One might fear that large energy 
differences occur between the two modes due to dif­
ferences in the short-range repulsion energies. Actually 
a compensation occurs between the differences of the 
nuclear repulsion energies and the differences of the 
electronic energies; it appears that the nuclear repulsion 
energy would favor the conrotatory mode by about 50 
kcal/mol. 

Therefore the assumption made in section II that the 
zero-order energies of the two modes are similar appears 
to be reasonable. 

At that stage, the butadiene is more stable than the 
cyclobutene by 10 kcal/mol (the experimental value 
being 20 kcal/mol25). 

Figure 5. Second-order derealization energy correction (in kcal/ 
mol) as a function of k. 

Figure 6. Absolute value of the coefficients of the main charge 
transfer states (TTI - • T2* and T2 -» 71-1* (in butadiene) and a -*• T* 
and T -*• a* (in cyclobutene)) as a function of k: xi and Tr2 are the 
two ir bonds of butadiene, T is the T bond of cyclobutene, and <r is 
the cyclobutene CC bond which is broken in the reaction. 

Second-Order Energy. From the demonstration 
given in section II, the preference of the conrotatory 
mode should be due to the effect of the rr* derealiza­
tion monoexcited states. Eim (Figure 4) shows that the 
monoexcitations actually bring the curve of the con­
rotatory mode to culminate at 110 kcal/mol under the 
top of the hill for the disrotatory mode. The butadiene 
and cyclobutene representations are in complete agree­
ment. The activation energy is about 55 kcal/mol for 
the conrotatory mode when starting from the butadiene 
molecule, and occurs for k = 5-6. The cyclobutene 
molecule appears to be more stable than the butadiene 
molecule by about 115 kcal/mol. 

In these nonpolar molecules, the polarization cor­
rections are weak and nonstereospecific. The evolu­
tion of the second-order derealization corrections 
(Figure 5) shows the dominant role of the charge trans­
fer monoexcitations i -*• j * . 

In order to analyze the respective role of the a un­
changed MO's and of the tr MO's which are destroyed 
in the reaction, we have given in Figure 6 the evolution 
of the main first-order coefficients of the charge transfer 

(25) W. G. Dauben, 13th Chemistry Conference of the Solvay In­
stitute, "Reactivity of the Photoexcited Organic Molecule," Interscience, 
New York, N. Y„ 1967, p 171. 
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Figure 7. Energy (in kcal/mol) of the lowest singlet excited state 
after an excitonic treatment. 

monoexcitations. The most important coefficients are 
those predicted in section II, i.e., those of the IT -*• TT* 
charge transfer states which increase much more in the 
conrotatory mode than in the disrotatory one. (They 
even are zero for the disrotatory mode of the cyclobutene 
molecule, due to cancellations between atomic inte­
grals.) A detailed analysis of the results indicates that 
there exists some stereospecific a -*• TT* or w -*• u* 
charge transfers; for instance in the cyclobutenic rep­
resentation, for k = 5 the excitations from the ter­
minal CH bonds toward the a CC bond which is going 
to be broken are respectively 0.15 and 0.075 for the 
conrotatory and the disrotatory modes. But the order 
of magnitude of these coefficients and their stereo-
specificity is much smaller than those of the TT -*• TT* 
derealization states. 

The diexcitations are not supposed to give stereo-
specific contributions. The two bonds diexcitations 
(i -*• i* and j -*• j*) which are responsible for the in­
tramolecular dispersion forces only favor the con­
rotatory mode by 2 kcal/mol in the transition state 
region. The intrabond correlation correction, due to 
the diexcitations in the same bond, also favors the 
conrotatory made by 6 kcal/mol in the cyclobutene 
representation for k = 6. This difference is not easy 
to interpret, but it remains small when compared to the 
stereospecific corrections of the monoexcitations. This 
explains the fact that the total second-order correction 
gives an energy curve (E2, Figure 4) rather similar to 
that obtained from the monoexcitations second-order 
effects (E2m, Figure 4) with an interpolated energy 
differences in the activation energies of the two modes 
of about 95 kcal/mol. 

The activation energy from the butadiene molecule 
is about 20 kcal/mol for the conrotatory mode, but the 
energy of the final state is much too small under the 
energy of the initial state. This is not due to the per-
turbative method, but to the CNDO/2 parametrization 
which fails to reproduce the relative stabilities of various 
isomers when some of them involve strained cycles;26 

the SCF-CNDO calculations also give a cyclobutene 
much more stable than the butadiene molecule.27 

For E2 in the Figure 4, one may notice a potential 
hole in the transition state region (k = 5-6) for the 
conrotatory mode. One cannot give to this hole the 
physical signification of a stable activated complex; 

(26) F. Jordan, M. Gilbert, J. P. Malrieu, and U. Pincelli, Theor. 
CMm. Acta, 15, 211(1969). 

(27) Hoarau, to be submitted for publication. 

it comes from the increasing divergence of the perturba­
tion process for the conrotatory mode (especially the 
intrabond diexcitation correction in the broken cr bond 
of the cyclobutene). 

Third-Order Results. F3 (Figure 4) gives the total 
energy after the third-order corrections. These curves 
given in Figure 4 result from an interpolation between 
k = 5 and 6 for the disrotatory mode and between k = 
6 and 7 for the conrotatory; in these intervals the cyclo­
butene representation diverges (due to the intrabond 
diexcitations in the broken a bond). The conrotatory is 
still favored but the activation energy from the butadiene 
is now about 60 kcal/mol from the butadiene for the 
conrotatory mode and the difference between the heights 
of the hills is 65 kcal/mol. 

Two third-order contributions appear to be stereo­
specific, the interaction between the monoexcited de-
localization states (j-* j * with /-+• k* and k -* j*) and 
the interaction between derealization monoexcited 
states (i -*• j*) with the two bond diexcitations (/ —»• 
/'* and j-*j*). The first one disfavors the conrotatory 
mode by 35 kcal/mol and the second one favors it by 
20 kcal/mol. 

The first contribution necessarily involves a MO's 
(since there are only two w MOs); if i and j are the 
two TT MO's, k may be the a MO of the central CC 
simple bond, and the analysis of this contribution is 
similar to that made below for the hexatriene molecule. 
The third-order effects cannot reverse the results ob­
tained from the second-order corrections. 

Biradical Representation. The zero-order energy of 
the biradical representation is much higher than those 
of the final and initial state representations except for 
k = 5. For that geometry, the results (see Table I) 

Table I. Energy Results for the Biradical Representation of the 
Transition State (k = 5, in kcal mol) 

Conrotatory Disrotatory 
mode mode 

Zero order -20 ,221 -20 ,218 
Second-order effect of the - 1 7 8 - 1 8 5 

monoexcited states 
Second-order corrected energy —20,497 —20,502 
Third-order effect of the 31 50 

interaction between the 
monoexcited states 

Third-order corrected energy —20,466 —20,451 

show that (a) the zero-order result favors the conrota­
tory mode by only 4 kcal/mol, (b) the disrotatory mode 
is favored by 5 kcal/mol after the second-order result, 
(c) the stereospecificity is actually obtained after the 
third-order corrections, as expected from the theoretical 
demonstration in section II: the conrotatory mode is 
favored by 15 kcal/mol. This is due to the interaction 
between the derealization monoexcitations which give 
respectively 50 and 31 kcal/mol corrections. 

Stereospecificity of the Photochemical Reaction. 
Figure 7 reports the energy curves in the lowest excited 
state. The energy is obtained after an excitonic treat­
ment, representing the configuration interaction between 
the local w -* TT* monoexcited states. The form of this 
excitonic CI matrix has been given in section II. 

The excitation energies are too high (9 eV for the 
butadiene instead of 5.7 eV, and 13.6 eV for the cyclo-
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butene instead of 7.2 eV); this is due to the use of the 
CNDO parameters but the stereospecificity is well re­
produced. The curves do not cross for the disrotatory 
mode, but they are very close to each other and no 
barrier occurs in this mode, which is the favored mode 
in the excited state (in agreement with the experimental 
result). Our calculation does not confirm the origin 
of the stereoselectivity in the photochemical reaction 
suggested by a TT valence bond calculation.28 According 
to this work, in the disrotatoiy mode the symmetrical 
excited state energy surface crosses the surface of the 
antisymmetrical excited states and presents a well for 
intermediate configurations. The geometry changes 
leaving the twofold symmetry allowed passage from the 
antisymmetrical excited state to this well, and a non-
radiative deexcitation occurs toward the ground state. 
In our calculation, the symmetrical state never crosses 
the antisymmetrical one. This difference may be due 
either to the differences between the parametrizations of 
Pariser-Parr used in ref 27 and CNDO, or to differences 
between the geometry changes of the intermediate 
states. 

Previous numerical extended Huckel calculations4 

have questioned whether the stereospecificity was actually 
determined by the heights of the potential barriers rela­
tive to the different modes. Our more elaborate all-
valence electron calculation confirms the existence of 
these qualitative differences in the characteristics of 
the potential surfaces and therefore substantiates the 
Woodward-Hoffmann demonstrations1-2 and other 
calculations.3,28 

Taking into account the fact that we used an in­
adequate parametrization and that the perturbation 
series may diverge for the transition region, one cannot 
be surprised not to have a quantitative agreement with 
the experimental thermodynamic results. 

Our purpose was mainly to verify the assumptions 
made in the localized demonstration of the stereospec­
ificity given in section II. Actually we have checked that 
(a) there was no significant stereospecific difference in 
the energy of the fully localized determinant; (b) the 
second-order derealization corrections are responsible 
for the stereospecificity and favor the experimentally 
preferred mode (the excitonic treatment also gives the 
experimental result for the excited state reaction); (c) 
the third-order correction shows the intervention of cor­
relation effects and a MO's. These effects are opposite 
to the second-order IT derealization effects, but they 
cannot reverse the conclusion. The hypothesis that 
the stereospecificity is determined by the lowest order 
stereospecific term appears to be reasonable. Moreover 
it is interesting to notice that the preferred mode is the 
same all along the reactional path; the two energetic 
curves do not cross. In such a case the analysis of the 
stereospecificity from the stabilization of the perturbed 
(or polarized) initial or final states is relevant.29 

IV. Extension of the Localized Demonstration to All 
Electrocyclic Reactions. The demonstration given in 
section II for two double bonds may be generalized to any 
number of double bonds, but the stereospecificity ap­
pears at higher and higher orders of the perturbation 
series, so that a simple technique is necessary to handle 

(28) W. Th. A. M. Van der Lugt and L. J. Oosterhoff, Chem. Com-
mm., 1235(1968). 

(29) L. Salem, "The Molecular Orbital Theory of Conjugated Sys­
tems," W. A. Benjamin New York, N. Y., 1966, p 287. 

the perturbation series. The many-body theory diagram­
matic techniques provide such an instrument. 

Brief Introduction of the Diagrammatic Conventions. 
One will represent by diagrams30 the different terms of 
the perturbation series. 

The first-order correction is zero, due to our H0 defi­
nition. The second-order correction is given by 

£ 2 = £<*o|p|*/>8/(£o _ E1) (23) 
1*0 

with $o as the zero-order approximation for the wave 
function, and <£7 as the excited states orthogonal to $0. 
All $/ are eigenfunctions of H0. E0 and E1 represent 
the eigenvalues of H0 

H0Q1 = E1Q1 (24) 

The third-order correction is given by 

2T1? (Eo - E1)(E0 - Ej) {lV 

In such a contribution we represent the contributions 
of the various sets of states (<i>/, $ / , $K,...) by diagrams 
which give at once the set of states <f>/, <fv, $K, . . . and 
successive matrix elements (^0JDI*/) , ($I\V\$J), etc. 
Each excited state <£/ is represented by a set of vertical 
propagation lines, each of them being characterized by 
the index of one of the occupied or virtual molecular 
orbitals implied in the excitation process from <S>0 

toward 3>7. The downward lines symbolize the holes of 
$ 7 (i.e., the levels which are occupied in 4>0 and empty 
in <t>7), and the upward lines symbolize the particles of 
<$j (i.e., the levels which are empty in <i>o and occupied 
in <£/). For instance, the following set of propagation 
lines 

represents the triexcited state obtained by replacing in 
$o<Pi by (pk*, <pj by ^1*, and <p„ by <p*. 

The matrix elements {<t>7]//|<iv) are visualized by 
dotted horizontal interaction lines. The elements of 
the monoelectronic operator bear only one mode, on 
which a propagation line comes and from which a 
propagation line departs. For instance 

HMk*) (i\h\k) (26) 
The bielectronic matrix elements bear two nodes. Each 
of these nodes is again the departure and arrival point 
of a propagation line. Each node represents an elec­
tronic distribution. For instance 

I-
(ik'l/r^j*!*) (ip j*q) (27) 

or more briefly (ik\j*l*). 

(30) For a systematic introduction of the diagrams of the many body 
problem see, for instance, N. H. March, W. H. Young, and S. Sam-
panthar, "The Many Body Problem in Quantum Mechanics," Cam­
bridge University Press, London, 1968. 
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(a) 

Figure 8. Definition of the atomic orbitals for the intermediate 
states in the hexatriene ->• cyclohexadiene reaction. Same comments 
as in Figure 2. 

A diagram for a nth order correction to the energy 
involves n successive interaction lines and therefore n 
matrix elements, and (n — 1) denominators equal to the 
zero-order excitation energies (E0 — E1) toward the 
successive excited states <£>/ which one reads from the 
propagation lines between two successive interaction 
lines.31 For instance, the third-ordef diagram 

may be read as 

{ik\j*l*){j*p\ik)(l*\h\p) 

E0-E 
I* 
k 

Hexatriene <=± Cyclohexadiene Reaction n = 3. If 
we assume the definition of the AO's given in Figure 8, 
the bonding orbitals will be in the initial state represen­
tation 

<Pi = (X2 + Xi)/\/2 

<P2 = (X3 ± X4)/\/2 

(Ps = (X5 + Xi)l\/l 

(28) 

according to the disrotatory or conrotatory character of 
the mode. The related antibonding MO's are obtained 
by changing the sign of the first AO in these expressions. 

As we have seen in the n = 2 reaction that the lowest 
order stereospecific corrections are more important 
than the higher order ones, we shall assume later on that 
the stereospecificity is determined by the lowest order 
stereospecific correction. 

We make here a further hypothesis: the monoelec-
tronic integrals between the AO's which are not bonded, 
neither in the initial nor in the final state, are neglected. 
The overlap between these AO's is actually about five 
times smaller than the overlap between the AO's which 
are linked or will be linked in the course of the reaction. 
Therefore the integrals <Xi|//|x5), (Xi|/z|x6), {X\\h\xi), 
(Xi\h\x*), etc., will be neglected. 

It results from Figure 8 and eq 28 that the integrals 
{<Pi\h\<f>^, (<p^,h\<pz*), {(pf'iti.ipi*), and <>i*|/z|<p2) are all 
equal to T(XiIAjX-J) according to the con- or disrotatory 
character of the reaction, and therefore positive in the 
conrotatory mode and negative in the disrotatory one. 

(31) These conventions are not sufficient to build the perturbation 
series, but they allow the reading of the diagrams which are introduced 
hereafter in the demonstration. 

The other IT monoelectronic molecular integrals are not 
stereospecific. The second-order derealization cor­
rection are not stereospecific since the integrals are 
squared. 

It is necessary to analyze the third-order corrections to 
find a stereospecific correction. The stereospecific cor­
rections will come from the interaction between de-
localization monoexcited configurations; in the CNDO 
hypothesis, this term is reduced146 to 

4EEE fc'W^X^W***^**1*1^ 
E(H)(E0- E/k* 3 k 

1 U0 — j - . \ 

{<Pi\h\<Pi*)(<P}\h\<P*)(<Pi*\h\<Pk) 

These corrections correspond to the diagrams 

(29) 

In the hexatriene molecule one gets thus three combina­
tions of indexes for the T correction 

= 1, j = 2, k = 3 
= 2, j = 1, k = 3 
= 3, 7 = 1 , k = 2 

Let us consider the first combination of indexes. (The 
other combinations give equal quantities.) The nu­
merators of eq 29 will be equal to 

((Pl|/2|<p2*)(p2*|A|^S*}<p3*|/*|<Pl) 

and 

-<^|Aki*X^2|A|^,)<^i*|A|^,> (30) 

Expressing these molecular integrals in terms of atomic 
integrals, one gets then a contribution 

± 2 4 < X 1 ! % 4 X X 2 | % 6 X X 5 | % 3 ) / A £ 2 

according to the disrotatory or conrotatory character 
of the cyclization. As the atomic integrals are negative, 
the disrotatory mode is favored. One might verify 
from eq 15-24 of ref 14e that in the CNDO hy­
potheses the other third-order corrections do not involve 
clearly stereospecific contributions. In the final state 
(cyclohexadiene) representation, referring to Figure 3, 
the bond MO's are one a bond in course of being broken 

<Pi = (X1 + X4)/ V2 (3D 
and two T bonds 

<P2 = (X3 + X6)/-s/2 

<P3 = (X6 + X 2 ) /A/2 
The only change of sign between the two modes con­
cerns the interactions between the bonds <pi and <p2 as 
it appears clearly from the figure. 

The demonstration is strictly the same as in the initial 
state representation. In the cyclohexadiene, for instance, 
the third-order diagram 
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gives the product (<pi\h\tpj*)(<p2*\h\<pi*)(<pi*\h\<p?). One 
obtains therefore a contribution 

+<X4|/*|x3><X4|/*|x5)<Xi|/!|x2)/A£2 (32) 

which has the same sign as {Xi\h\x%). Now (x^lxs) 
is negative in the disrotatory mode and positive in the 
conrotatory mode. Again, the disrotatory mode is 
favored. 

The same demonstration might be done for the bi-
radical state representation (in this case the stereo-
specificity would arise from fourth-order diagrams). 
In any case the stereospeciflcity appears to be deter­
mined by circular derealization interactions around 
the reacting cycle. 

Generalization to n Double Bonds. The w atomic 
orbitals and the bond MO's of the n double bond 
polyene may be defined as in Figure 9 by inserting sup­
plementary double bonds in the scheme of hexatriene. 
The MO's are defined according to 

<Pi = (X2 + Xi)/\/2 

<P2 = (Xi + Xi)/V2 

<P3 = (Xo + Xt)I \/2 

<Pn = (X2n-I + Xin)I \/2 (33) 

Then the integrals {pi|njp2), (<pi\h]<p2*), (<f>2\h\<pi*), and 
{<Pi*\h\<pi*) are all positive in the conrotatory mode and 
all negative in the disrotatory one, as we have seen for 
the hexatriene molecule. The other integrals are not 
stereospecific. 

The second-order TT-T* derealization diagrams give 
2(« — 1) contributions between adjacent bonds which 
are not qualitatively stereospecific. One may analyze 
the diagrams of order 3 ^ k < n which only imply 
monoelectronic interactions on their interaction lines. 
The diagrams which do not imply <px (or pi*) and p2 

(or (pi*) are not stereospecific. The diagrams are neg­
ligible if they imply a long-range interaction between 
nonneighbor molecular orbitals. Therefore the non­
zero diagrams of order k < n imply a one-step pro­
gression along the chain from one bond a to the bond 
1 + a, and then a regression to the point of departure 
by a one-step process, as occurs in the following dia­
gram. 

7 l(a + 4) 
(a + 1}*j 7 

" / Va + 3) 
°*\ I -

(a+1)*W(a + 2) 

The nonzero diagrams implying only monoelectronic 
interactions are then necessarily of even orders. If 
they imply an interaction between the bonds 1 and 2 in 
the progression, another interaction between the bonds 
2 and 1 appears in the return process: as the corre­
sponding matrix elements are of the same sign for a given 
mode, these diagrams, even when they imply an inter­
action between the bonds 1 and 2, give the same cor­
rection for the two modes. 

The stereospecific diagrams must imply an odd num­
ber of times for the interaction between the bonds 1 and 2 

and they necessarily are of order k ^ n. If one con­
siders the lowest order diagrams (k = n), which are 
supposed to be the dominant ones, one will get stereo­
specific contributions from the diagrams representing 
n interactions between the successive bonds of the chain 
in a cyclic process. For instance, for the octatetraene 
molecule, the diagrams 

are stereospecific since the integrals (pi[n|p2) or {<pi\h\ p2*) 
which appear in these diagrams have opposite signs for 
the two modes. 

To demonstrate that the favored mode is conrotatory 
for an even number n of double bonds and disrotatory 
for an odd number n, one proceeds in the following 
manner. 

(i) One first demonstrates that for a given mode and 
an n double bond polyene, all the nth-order diagrams 
which only imply monoelectronic interactions around 
the cycle have the same sign, whatever their topology 
and their indexation are. 

In a full generality these diagrams look like the follow­
ing diagram. 

The 2v angular points correspond to the hole-particles 
interactions. There are v — 1 crossing points of line 
which are of the same nature in the diagram. When 
v = 1 one has a "sausage" diagram implying only 
monoexcited intermediate states, like the diagram 

I 
(for H = 9) 

Moreover there are p interactions on the upward lines 
(between particles) and q interactions on the downward 
lines (between holes) so that p + q + 2v = n. If one 
arranges the molecular orbitals in a increasing order 
along the cyclizing polyene, the interactions will take 
place between the MO's of successive bonds r and r + 1. 

The signs of the molecular orbitals coefficients may 
be chosen according to the following convention. 

+ ( r ) + + ( ? • + ! ) + 
a a + 1 

- + - + 
(r*) (r + I)* 
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(a) (b) 

Figure 9. Definition of the atomic orbitals for the intermediate 
states of an n double bonds electrocyclic reaction. Same definition 
of (a) and (b) as in Figure 2. 

The interactions between holes (r\h\r + 1) will be equal 
to +p if /3 = (xalA|xa+i). The interactions between 
particles will be equal to — /3, and the interactions be­
tween holes and particles are given by 

(r\h\(r + 1)*) = - /3 

(r*\h\(r + I)) = +/3 

One can verify that if the diagram involves 2v angular 
points, there are v interactions (r\h\(r + 1)*) and v 
interactions (r*\h\(r + I)). 

Consequently, the product of the matrix elements 
occurring in the diagram has the sign (—l)t,+?/3B. The 
sign rules of the diagrams imply a sign change for each 
hole-hole interaction and for each crossing point of the 
upward lines (or downward lines) between themselves. 
So the diagram gives a contribution 

( -1 ) " -!(3"/AE"-

(_1)—1/3"/AE"-1 

the sign of which depends on n only (for a given mode), 
(ii) The sign of all these diagrams is obtained im­

mediately from the consideration of a peculiar diagram, 
for instance, from the diagram representing the inter­
action between the various excited charge transfer 
states from the bond 1. One goes from such a diagram 
for the (n — 1) double bond polyenes to the correspond­
ing diagram for n double bonds 

Now 

and 

(<P(n-\)*\h\fl) = (<Pn*\h\<(>i) 

<<?(„-!)* !%„*) = -<Xl(B-l)|A|X2„-l) 

Therefore ((p^-^lhlpn*) is always positive while the 
denominator energy 

E0 - E 

is always negative. The nth-order diagram contribu­
tion is therefore equal to the in — l)th-order contribu­
tion multiplied by a negative number and the preferred 
mode changes with the parity of the number of con­
jugated bonds implied in the reaction. As the preferred 
mode is conrotatory for n = 2, the preferred mode is 
conrotatory for even n and disrotatory for odd n in 
agreement with the Woodward-Hoffmann rules. 

The demonstration of the stereoselectivity rules for the 
excited state may be summarized as follows. 

In the compounds with n double bonds (n > 2) the 
excitation is localized on the two terminal bonds which 
undergo a rotation.32 If one calls <pi and <p2 the terminal 
molecular orbitals w which undergo a rotation, the 
zero-order wave function <i>0 keeps the form of eq 21. 
Then the excitonic matrix reduced to the excited states 
built from <pi and <p2 is no longer stereospecific since in 
/3i*2* and /3i2, (x±\h\Xi) becomes negligible. The dif­
ference proceeds from (n — l)th perturbation terms 
analogous to the stereospecific terms considered in the 
ground state, but where, henceforth, the molecular 
orbital 1*, partially occupied in the <t>0 state, becomes 
a hole and the molecular orbital 1, partially empty in 
$o, becomes a particle. For instance, for hexatriene 
besides the diagrams 

one gets diagrams 

,(n-1)* 

(n-1)» 

by adding a supplementary interaction (tp{n-.i:)*\h\(pn*) 
and replacing the interaction (<pi\h\<p^n-I)*) by {<{>i\h\ 
<pn*). If the (n — l)th-order diagram contribution is 
equal to C X (p(n-i)*|A|W> the contribution of the 
wth-order one is equal to 

C X <<P(»-i)*|A|̂ n*><<P»*|A|«Ji>/(£0 - E (34) 

These last diagrams give more important contributions 
than the first one because the associated denominators 
are much weaker (since they are differences between 
energies of monoexcited configurations) and with signs 
which are opposite to the first diagram signs, because 
the passage from cpi to <pi* reverses the sign of the 
matrix elements between <pi and <pz or between pi and 
(P2- This results in an inversion of the favored cyclization 
mode in the excited state with the respect to the pre­
ferred one in the ground state. 

Conclusion 
The present localized demonstration of Woodward-

Hoffmann rules for electrocyclic reactions requires 

(32) J. Langlet, to be submitted for publication. 
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some hypotheses (about the atomic integrals) which are 
not necessary in the well-known demonstration based 
on correlation diagrams. However the Woodward-
Hoffmann demonstration also required some energetical 
hypotheses (quasi-linearity of the variation of de­
terminant energies and smallness of the interaction 
terms between determinants) which are as drastic as 
ours. 

Taking into account from its very basis the spatial 
localization of the MO's, our method is not subject to 
the ambiguities of the correlation diagrams that we 
noticed on the cyclooctatetraene -*• cubane reaction or 
the (6 + 2 Diels-Alder reaction. Using localized MO's, 
the method works with the minimal number of MO's 
on the reacting circle without requiring the partial 
preliminary relocalization which should in principle be 
necessary for the application of the basic correlation 
diagrams to substituted compounds. 

In our demonstration the stereospecificity appears 
directly determined by the parity of the number of 
reacting bonds, without any symmetry consideration. 
The stereospecificity of the cyclization of the n bond 
polyenic chain results from nth-order corrections repre­
senting circular derealization effects along the reacting 
circle; the sign of these contributions changes with the 
mode and the parity of n. It is amazing to notice at 
this point that an isomorphism definitely exists between 
this quantum chemical picture and the traditional dot-
and-arrows intuitive chemical visualization of the 
chemical reaction. For instance, in the stereospecific 
diagram for n = 3, an electron jumps from bond 3 to 
the antibonding MO on bond 1, then an electron jumps 
from bond 3 to the vacant bonding MO on bond 2, and 
the electron in the antibonding MO <pi* on bond 1 
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<f O 
turns back on bond 3 to occupy the vacant MO. The 
specificity of the quantum description lies in the 
knowledge of the nodal structure of bonding and anti-
bonding MO's. (This is true in both the Woodward-
Hoffmann demonstration and in this localized one.) 

One interesting consequence of our demonstration is 
that the energy difference for the transition state of the 
two modes appearing at higher orders of the perturba­
tion development, should tend to zero when the dimen­
sion of the reacting circle increases. If one does not 
neglect the monoelectronic integrals between nonbonded 
atoms, some lower order terms may balance the stereo-
specific nth-order contribution which should in principle 
be dominant. The experimentally known examples in 
fact only concern a few number of double bonds (n = 
3). This demonstration suggests that for large enough 
n, the two nodes might compete with almost equal 
weights. 

The PCILO-CNDO numerical calculation, although 
it does not give a quantitative agreement with experi­
ment (due to the parametrization), confirms both the 
experimental results and the theoretical analysis. It 
will be completed in the near future by analogous ab 
initio PCILO calculations for n = 2 and other PCILO-
CNDO calculations for n = 3. 

The same type of demonstration applies with minor 
changes to the other types of concerted reactions. The 
corresponding demonstrations and numerical calcula­
tions will be given later. 
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